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Abstract 

In modern direct methods a very powerful multi- 
solution approach involves the refinement by some 
means of initially random phases. In exploring a 
number of refinement functions Debaerdemaeker & 
Woolfson [Acta Cryst. (1983), A39, 193-196] found 
by accident a function of phases, the maximization 
of which was very effective in obtaining substantially 
correct phase sets. This has led to the X M Y  method 
which works well although no completely rational 
explanation can be offered for how it does so. 
Examples of its use in the ab initio solution of 
unknown structures are given and tests are described 
indicating its usefulness as a means of carrying out 
multisolution fragment development. 

Introducing some properties of X M Y  

Debaerdemaeker & Woolfson (1983) explored the 
efficiency of a number of functions whose maximiza- 
tion or minimization might be expected to refine 
initially random phases. The refinement process 
which they found to be most effective is the parameter- 
shift method described by Bhuiya & Stanley (1963). 
It has the advantage of being able to jump away 
from a local extremum and find a better one while 
most other techniques become locked into the first 
extremum they locate. 

In their investigations Debaerdemaeker & 
Woolfson (1983) found by accident a very effective 
process, called X M Y  (X minus Y), involving the 
function 

¢, =Z IX(h)-  Y(h)] (1) 
h 

where 

X(h) = E IE(h)E(h')E(h-h')l 
h' 

x cos [ ~(h) - ~(h') - ~(h- h')] 
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and 

Y(h) = E IE(h)E(h')E(h-h')l 
h' 

x sin [ ~o(b) - tp (h ' ) -  ~0(h- b')]. 

While a correct set of phases would be expected to 
make X(h) large and positive and Y(h) small in 
magnitude, logic dictates that I Y(h)l should appear 
in (1) rather than Y(h). In fact making Y(h) equal 
to its expectation value, zero, was the way in which 
Hauptman & Karle (1956) first derived the tangent 
formula and Debaerdemaeker, Tate & Woolfson 
(1985) showed that the tangent formula followed also 
from the maximization of ~ X(h). It seems therefore 
that the two terms in qJ are both driving towards 
satisfying the tangent formula. However, there is the 
nagging doubt that perhaps one could maximize ~b 
by, for example, making Y. X(h) positive but of mod- 
erate magnitude while making Y'. Y(h) large and nega- 
tive - which would be well removed from any realistic 
values of phase. 

Another source of concern is that even for a sub- 
stantially correct set of phases for which @ was 
maximized, then for the enantiomorph structure, 
which would reverse the values of all the phases, the 
value of ~b would change. This means that the quantity 
~b is not enantiomorph independent and would have 
two different values for sets of phases of equivalent 
validity. As far as we know all previous techniques 
of refinement have the property that the refinement 
pathway is equivalent, but antisymmetrically related 
to the original one, if the enantiomorph phases are 
employed; this seems not to be true for X -  Y. 

We can satisfy ourselves that the condition of hav- 
ing a moderate sized Z X(h) and large negative 

Y(h) will be very unlikely. In the maximization of 
each three-phase invariant appears three times - 

in X(h) as 

~p(h)- ~ (h ' ) -  ~ ( h -  h') 
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Fig. 1. Structural diagrams for: (a) GUENPH6; (b) G5076; CtsH~sCIN302S; (c) [Cu(C3oH2oN902)], the portion CF3SO 3 is not shown; 
(d) CIsHITN3Os; (e) C48H340 2. 
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Table 1. A non-centrosymmetric solution of  the structure GUENPH6 

The figures o f  merit  ABSFOM,  ~o, R E S I D  and C F O M  are the ones used in the SAYTAN (MULTAN) system. Solutions marked  * 
show the complete  structure while that  marked ** shows a considerable  fragment.  

E X(h) E Y(h) 
Set (x  l0 s) (x  105) (x  104) A B S F O M  O0 R E S I D  C F O M  

1 0.902 0.877 -0.257 0.4804 5.984 45.33 0-823 
2 0-586 0.834 -0.226 0.4434 4-123 48.69 1.057 
3 0-926 0.903 -0.238 0.4802 4.948 47.21 0.976 
4 0.889 0.863 -0.252 0.4027 4-519 51.02 0.891 
5 0.965 0.945 -0.207 1.0015 1.223 19.10 2.820** 
6 1.01 0.988 -0-224 0.9194 1-203 17-18 2.771" 
7 1.05 1.02 -0.272 0.4448 6.432 49.80 0.609 
8 0.802 0"~79 -0-232 0-3574 5.334 52-53 0-659 
9 1"01 0"987 -0"225 0"2435 4"369 60-10 0"555 

10 0"899 0"878 -0"213 0"3992 5-545 51"52 0"687 
11 0"931 0"908 -0"230 0"4334 5"346 48"54 0-823 
12 0"917 0"893 -0"234 0"5736 5"139 41"48 1"162 
13 1"01 0"985 -0"219 0"1836 6"128 65-10 0-061 
14 0.826 0"807 -0"190 0"3944 6"459 50"40 0"536 
15 0"840 0.816 -0-240 0.4222 5-900 49-12 0"696 
16 0"958 0.932 -0"254 0.3908 6.408 50.94 0"530 
17 0"952 0.931 -0"206 0.3794 4-105 51-73 0.927 
18 0"868 0"845 -0"225 0"4050 5-355 49"60 0-768 
19 0"980 0"957 -0.228 0.3754 3"822 49-93 1-011 
20 1"01 0"985 -0-234 1.0820 1.043 16.29 3-000* 

Table 2. A centrosymmetric solution for the structure 
GUENPH6 

The set marked  * shows the complete  structure. 

E X(h)=~) 
Set (xl05) ABSFOM ~o RESID CFOM 

1 0.673 0.6257 3.869 36.62 0-963 
2 0"559 0-4760 5.532 45.50 0.055 
3 0.778 0.7642 2.794 30.36 1.632 
4 0.609 0.5401 4.404 39.80 0.601 
5 0.559 0.4752 2.837 43.17 0-734 
6 0.798 0-7922 2.558 27.99 1.810 
7 0.723 0.6909 2.469 31.84 1.540 
8 0.591 0.5169 4.367 42.79 0.471 
9 0.636 0.5768 3.370 41.21 0.841 

10 0.534 0.4407 4.257 45"49 0-284 
11 0"630 0"5685 4-270 39"93 0.671 
12 0.646 0"5898 4.205 37"79 0"792 
13 0-751 0.7284 2.564 31.01 1.606 
14 1"02 1"0820 1.043 16"29 3"000* 
15 0"735 0"7083 2.802 32"16 1"480 
16 0"799 0"7923 2"630 27"90 1.797 
17 0-643 0"5860 3"579 39"36 0"872 
18 0-749 0-7267 2-599 30"81 =Setl3 
19 0.670 0.6216 3.578 35.57 1-057 
20 0.851 0.8610 4.057 31.39 1-467 

and in X(h ' )  and X ( h - h ' )  as 

tp (h') - q~ (h) + ~0 ( h -  h') 

and 

tp (h - h') - ~p (h) + ~p (h'). 

If the value of the first form of the three-phase 
invariant is s then the other two both have the value 
- s .  Depending on the way in which the program 
handles E2 relationships the three manifestations of 
the three-phase invariant could have two of one sign 
and one of the other or they could all be of the same 
sign. In the first case the component of ~ containing 

the relationship will be 

C1 = 3 cos (s) ± sin (s) (2) 

while the second case gives 

C2=3 cos ( s ) - 3  sin (s). (3) 

It is straightforward to show that C1= 
101/2 COS ( S +  18 °) and that C2 ~- 181/2 c o s  ( s  - 4 5  °) so 
that maximizing ff is tending to drive the three-phase 
invariant towards the values + 18 or +45 ° respectively. 
The normal tangent formula tends to drive towards 
the value zero but, even so, we can see that it is likely 
that maximization of ~b will tend to make ~ X(h)  
large and positive. 

What actually happens in the refinement process 
is that the value of ~ Y(h) is always negative and 
much smaller in magnitude than ~ X(h).  This is illus- 
trated in Table 1 for a recently solved structure code- 
named GUENPH6,  (C16HgFsO2)2, P21/n, a = 20.859, 
b--7.127,  c = 9 . 2 8 7 / ~ ,  /3=94.91 ° , Z = 4  (Fig. l a ;  
asymmetric unit is half the molecule). This centrosym- 
metric structure was treated as though it was non- 
centrosymmetric and the phases were taken as the 
nearest acceptable value at the end of the refinement 
process. In the 20 trials shown in Table 1 there were 
three substantially correct solutions, being those with 
the highest SA Y T A N  (successor to M U L T A N )  com- 
bined figures of merit. It will also be noted that the 
values of ~ Y(h) are all negative and about 2% of 
the values of ~ X(h)  in magnitude. 

While GUENPH6 is under discussion it is interest- 
ing to compare the results in Table 1 with those in 
Table 2 where the structure is treated as centro- 
symmetric. The initially random phases are chosen 
from the alternatives 0 and 180 ° and then refined with 
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a parameter-shift step of 180 °. In this case there is 
only one correct solution in 20 trials. Our experience 
with X M Y  seems to show that it is always better to 
treat centrosymmetric structures as non-centrosym- 
metric. 

The situation, which is abundantly confirmed by 
experiment, is that maximizing q, is far more effective 
in refining phases than is the normal tangent formula 
or the apparently more logical formula obtained by 
substituting • IY(h)l for Y. Y(h) in (1). While X M Y  
is, in general, not quite as powerful as the Sayre- 
equation tangent formula (Debaerdemaeker,  Tate & 
Woolfson, 1985) it is well worth having as a back-up 
method to try in the event that others fail. 

Structures recently solved with X M Y  

We now give examples of some unknown, and some- 
times difficult, structures which have all recently been 
solved with X M Y .  

(1) C~sH~sCIN302S (code name G5076), P I ~ Z  = 6 
(Fig. lb).  a =  17.905, b= 15.940, c= 10.021 A; a = 
94.13, fl = 104-43, 3' = 102 "22°. This structure contains 
150 independent non-hydrogen atoms. Twenty sets 
of initially random phases were refined. That with 
the highest figure of merit showed almost all of 
the six molecules in the asymmetric unit. In all 
the molecules the molecular chain was complete 
and atoms were only missing from the terminal 
phenyl groups. Attempts to solve this structure with 
M U L T A N  and S A Y T A N  were unsuccessful. 

(2) [Cu(C3oH2oN9OE)].CF3SO3, P i ,  Z = 2  (Fig. 
lc).  a =9.177, b = 10.735, c = 18.231 A; a = 102.65, 
fl = 106.6, 3,=93.89 °. Again twenty sets of phases 
were refined. The one with the highest figure of merit 
showed not only the Cu atom but also eight of the 
nearest neighbours. This structure could also readily 
be solved with both M U L T A N  and S A Y T A N .  

(3) CI8H~7N3Os, C2/c,  Z = 8  (Fig. ld) .  a =  
16.537, b = 17-109, c = 12.074 A,/3 =95-48 °. Only five 
sets of phases were refined. The one with the best 
figure of merit showed the complete structure. Again 
this is a structure which could be solved with both 
M U L T A N  and SA YTAN.  

(4) C48H3402, P212121, Z = 4 (Fig. le).  This struc- 
ture turned out to be rather difficult and 100 sets of 
phases were examined. However, the set with the 
highest figure of merit showed the complete structure. 
Unsuccessful attempts to solve this structure have 
been made in many laboratories using a variety of 
direct and non-direct methods. Present indications 
are that X M Y  is the only readily available method 
capable of solving this structure. 

All these structures will be described fully in due 
course. 

Partial structure development with XMY 

When direct methods generate a structural fragment 
then objective procedures can be employed to try 
to derive the whole structure from the fragment - the 
first such procedure being that suggested by Karle 
(1968). Yao Jia-xing (1983) introduced the concept 
of multisolution fragment development based on the 
R A N T A N  procedure he had developed. We have 
similarly used X M Y  to develop fragments. The stages 
in the process are: 

(i) Structure factors, Fc, are calculated for the 
fragment. 

(ii) Where IFcl is greater than some fraction of IFol 
the phase estimate, q~c, is accepted as a reliable one. 

(iii) Non-reliable phases are partially randomized 
by adding 72x ° to q~c, where x is chosen randomly 
from a uniform distribution between -1  and 1. 

(iv) The phases are refined by X M Y  with the 
'reliable' phases fixed until the last few cycles of 
refinement. 

(v) The process is repeated from (iii) to give several 
initial sets of phases and a multisolution approach. 

The results of tests with several fairly difficult 
known structures are now given. 

(1) MUNICH1 (Szeimies-Seebach. Harnisch, 
Szeimies, Van Meerssche, Germain & Declercq, 
1978), C2oHl6, C2, Z = 8. A fragment ofsix randomly 
chosen correct atomic positions was chosen as the 
fragment (13% of the structure). Of the twenty phase 
sets generated five showed the complete structure. 

(2) Factor S (Declercq, Germain, Van Meerssche, 
Hull & Irwin, 1978), C43H49N7OIo, P212121, Z =4.  
A fragment of seven connected atoms was chosen 
(10% of the structure). One set out of the fifty sets 
of phases showed the complete structure. 

(3) PtKOW1 (Debaerdemaeker,  Berhalter, Weise- 
mann & Brune, 1987), [Pt(CIIH9)2(CI8HIsP)2].- 
CH2C12, P2~/a, Z = 4. Only Pt was taken as the input 
atom. Out of 20 trial sets four showed a large part of 
the structure (48 atoms). 

Concluding remarks 

Although it is not entirely satisfactory that the power 
of X M Y  cannot be explained in a totally rational 
way, it cannot be denied that it is an extremely 
effective way of solving crystal structures - more so 
than for many methods that can be rationalized. A 
referee of this paper made the comment ' . . . t h e  
authors are preventing the method from satisfying all 
triplets exactly and thus may well be holding the 
enantiomorph in a better way' - which is as good an 
explanation as is available at present. X M Y  is now 
an integral part of S A Y T A N 8 7 ,  the successor to 
M U L T A N ,  which is the current package we are dis- 
tributing. 
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However, the fragment-development component is 
not available with SA YTAN87 as yet. The test results 
we report have been carried out with a program based 
on MULTAN80 which stores information, including 
data, in a way different from that in SA YTAN87. 

We wish to record our gratitude to the European 
Economic Community, the Science and Engineering 
Research Council and the Deutsche Forschungs- 
gemeinschaft for their support of this research. We 
are also grateful to a referee for his helpful comment 
which we have quoted and other useful suggestions 
on presentation. 
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Abstract 

General equations are presented for the diffuse 
scattering due to local atomic arrangements and 
displacements in disordered alloys having h.c.p. 
structure. The scattering due to static and dynamic 
displacements is treated separately. The calculations 
show that the second-order terms in displacements 
are sufficient for observing the direct effect of tem- 
perature factors, common to all contributions of 
diffuse scattering. A new data analysis scheme, using 
asymmetry of diffuse scattering around superlattice 
reflections, is presented for a complete separation of 
various components. 

Introduction 

Since the early experiments of Wilchinsky (1944) and 
Cowley (1950), most quantitative studies of diffuse 
X-ray or thermal neutron scattering to reveal local 
atomic arrangements in disordered alloys have been 
carried out on systems having f.c.c, structure. The 
techniques for interpreting the diffraction pattern, 
data and error analysis are still evolving; see Boric 
& Sparks (1971), Gragg, Hayakawa & Cohen (1973), 
Hayakawa & Cohen (1975), Tibballs (1975), Khanna 
(1984) for the latest procedures. Although there are 
a large number of alloy phases which possess h.c.p. 
structure at high temperatures and which undergo 
ordering on cooling, general equations for diffuse 
scattering from such alloys have not yet been pre- 
sented. Development of these equations and the 
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separation procedures will be the principal subject 
of this paper. 

After a brief review of the diffraction theory for 
disordered alloys, general equations are derived for 
the diffuse scattering due to short-range order and 
displacements (both static and dynamic) from h.c.p. 
alloys. Dynamic displacements due to thermal vibra- 
tions are treated separately to account properly for 
their effect on other components of diffuse scattering. 
Procedures for data analysis and separation of various 
diffuse scattering components are also discussed. 

1. Diffraction theory 

From kinematic theory, the total scattered intensity 
from a disordered binary alloy can be written as 

Itot = ~ f:kfrk'exp[iQ.(rik--rrk')]. (1) 
i,1' 
k,k' 

J~k represents the atomic form factor of an atom 
located at position rig. I and k are lattice and sublattice 
indices respectively. Q is the diffraction vector. Let 

i Xk be the sublattice fraction of atom i on sublattice 
k and let piJk k, represent the conditional probability 
of finding a j-type atom on the k'th sublattice of the 
/'th lattice point if there is an/-type atom on the kth 
sublattice of the lth lattice point. Equation (1) may 
then be written as (Hayakawa & Cohen, 1975) 

/tot ~. i ij = Xkftkfrk'Pkk'exp[iQ.(rtk--rrk')]. (2) 
i,l' 
k,k' 
i,j 
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